

- 1 -

April 2023

Fundamental IT Engineer Examination (Afternoon)

Questions must be answered in accordance with the following:

Question Nos. Q1 Q2 – Q5 Q6 Q7, Q8
Question Selection Compulsory Select 2 of 4 Compulsory Select 1 of 2
Examination Time 13:30 – 16:00 (150 minutes)

Instructions:

1. Use a pencil. If you need to change an answer, erase your previous answer completely
and neatly. Wipe away any eraser debris.

2. Mark your examinee information and test answers in accordance with the instructions

below. Your answer will not be graded if you do not mark properly. Do not mark or write
on the answer sheet outside of the prescribed places.
(1) Examinee Number

Write your examinee number in the space provided, and mark the appropriate space
below each digit.

(2) Date of Birth
Write your date of birth (in numbers) exactly as it is printed on your examination
admission card, and mark the appropriate space below each digit.

(3) Question Selection
For questions Q2 through Q5, and Q7 and Q8, mark the of the questions you
select to answer in the “Selection Column” on your answer sheet.

(4) Answers
Mark your answers as shown in the sample question below.

[Sample Question]
Which of the following should be used for marking your answer on the answer sheet?

Answer group

a) Ballpoint pen b) Crayon c) Fountain pen d) Pencil

Since the correct answer is “ d) Pencil ”, mark the answer as below:

[Sample Answer]

Sample ●

Do not open the exam booklet until instructed to do so.
Inquiries about the exam questions will not be answered.

- 2 -

Notations used in the pseudo-language

In questions that use pseudo-language, the following notations are used unless otherwise
stated:

[Declaration, comment, and process]

Notation Description
type: var1, ... , array1[], ... Declares variables var1, ... , and/or arrays

array1[], ... , by data type such as INT and CHAR.
FUNCTION: function(type: arg1, ...) Declares a function and its arguments arg1,
/* comment */ or // comment Describes a comment.

Pr
oc

es
s

variable ← expression; Assigns the value of the expression to the variable.
function (arg1, ...); Calls the function by passing / receiving the

arguments arg1,
IF (condition) {
 process1
}

ELSE {
 process2
}

Indicates the selection process.
If the condition is true, then process1 is executed.
If the condition is false, then process2 is
executed, when the optional ELSE clause is present.

WHILE (condition) {
 process
}

Indicates the “WHILE” iteration process.
While the condition is true, the process is
executed repeatedly.

DO {
 process
} WHILE (condition);

Indicates the “DO - WHILE” iteration process.
The process is executed once, and then while the
condition is true, the process is executed
repeatedly.

FOR (init; condition; incr) {
 process
}

Indicates the “FOR” iteration process.
While the condition is true, the process is
executed repeatedly.
At the start of the first iteration, the process init is
executed before testing the condition.
At the end of each iteration, the process incr is
executed before testing the condition.

[Logical constants]

true, false

[Operators and their precedence]

Type of operation Unary Arithmetic Relational Logical
Operators +, −, not ×, ÷, % +, − >, <, ≥, ≤, =, ≠ and or

Precedence High Low
Note: With division of integers, an integer quotient is returned as a result.
 The “%” operator indicates a remainder operation.

- 3 -

 Question Q1 is compulsory.

Q1. Read the following description of TLS version 1.2 connection establishment process, and

then answer Subquestion.

HTTPS refers to the combination of HTTP and Secure Socket Layer (SSL) or Transport
Layer Security (TLS). TLS is the successor to SSL and is considered the current standard. It
is a cryptographic protocol that can be used to enable secure communication between a web
browser and a web server by encapsulating HTTP data inside TLS packets. HTTPS allows
the client, in this case, a web browser, to communicate confidentially with the web server
and allow the server authentication. The identity of the web server is required to be verified
beforehand by submitting the web server certificate to a trusted third-party certification
authority (CA). The information submitted for verification include the fully qualified domain
name (FQDN) of the web server and the public key that is linked to the private key pair
installed on the web server itself. Then, the CA signed the web server certificate with its
private key and set the validity period of the signed certificate. Subsequently, the signed
certificate is returned to be installed on the web server. The standard format of this type of
certificate is X.509.

In general, TLS aims to authenticate a server and start encryption between the client and the
server. Therefore, various mechanisms can be used to ensure that both client and server have
the same key for a particular session. This is called a session key (also called a shared key)
which will be calculated and derived from pieces of information exchanged between the
client and server. These take place during TLS connection establishment. A simplified
process of TLS connection establishment is shown in Figure 1.

[TLS connection establishment process]
(1) ClientHello: The client sends a client hello message containing the information

regarding its cryptographic capabilities, the highest TLS version supported by the client
and other related information including a client-generated random number to be used
for master secret generation to the server.

(2) ServerHello: The server selects connection parameters, including the encryption and

compression mechanism supported by both the server and the client, generates another
random number, and then sends them back to the client.

- 4 -

Figure 1 TLS connection establishment process

(3) Certificate: This message usually carries the server’s X.509 certificate chain, including

the server’s public key and other related information to the client. Then, the client can
authenticate the server’s X.509 certificate with the corresponding CA. Since the server’s
certificate was digitally signed with the ___A___ , it can then be verified with the
CA’s public key residing in the CA’s certificate. If the authentication fails, the client
will warn the user that the certificate is invalid or cannot be verified and will ask whether
the user wishes to proceed.

(4) ServerKeyExchange: This message carries additional information required to generate

the master secret depending on the selected cipher suite. It is optional and may not be
sent if the key exchange used does not require additional information.

(5) ServerHelloDone: This message indicates that the server has completed sending all

intended information. Then, it will wait for the response from the client.

(6) ClientKeyExchange: This message carries the client-contributed information required

and sufficient to generate the master secret depending on the selected cipher suite.
Compare to the server key exchange message, the client key exchange message is
mandatory.

(7) ClientChangeCipherSpec: The client sends this message to inform the server that the

client has enough information to generate the encryption key, including all required
parameters to start encryption. The client switches to encryption after this message.

Client Server

(1) ClientHello.

(2) ServerHello

(6) ClientKeyExchange

(9) ServerChangeCipherSpec

(3) Certificate

(4) ServerKeyExchange

(5) ServerHelloDone

(7) ClientChangeCipherSpec

(8) ClientFinished

(10) ServerFinished

- 5 -

(8) ClientFinished: The client sends this message to indicate that the connection

establishment is completed. It contains a hash of all messages sent and received mixed
with the master secret, allowing the server to verify the integrity of the establishment
process.

(9) ServerChangeCipherSpec: The server sends this message to inform the client that the

server has enough information to generate the encryption key, including all required
parameters to start encryption. The server switch to encryption after this message.

(10) ServerFinished: The server sends this message to indicate that the connection

establishment on its side is completed. It contains a hash of all messages received and
sent mixed with the master secret allowing the client to verify the integrity of the
establishment process.

Table 1 shows the summary of the above process.

Table 1 Summary of the TLS connection establishment process

Steps Description
(not shown) Exchange capabilities and agree upon the desired connection

parameters, which is completed at step ___B___ .
(not shown) Validate the certificate(s) or authenticate with other methods.
(4), (5), (6),
(7) and (9)

Agree on a shared master secret that will be used as ___C___
provided that the server will have enough information required to
generate the master secret after receiving the message at step
___D___ .

(8) and (10) Start to send messages on the encrypted communication channel and
verify the messages used during the process to ensure that they are not
tampered with by a third party.

Here, steps (3), (4), and (6) are considered as a single process called the key exchange. The
goal of the key exchange is to generate the premaster secret, which will then be used to
construct the master secret later. One of the most well-known key exchange algorithms is
the RSA key exchange. The mechanism of RSA key exchange is explained below:

[RSA key exchange]
RSA is universally supported as the standard key exchange algorithm. In this case, the client
is responsible for generating a premaster secret and encrypting it with ___E___ . The result
is sent in the ClientKeyExchange message to the server. The server will then decrypt the
premaster secret and use it to generate the master secret later.

- 6 -

The strength of HTTPS comes from the fact that the master secret or the session key is newly
generated for every new session, although the web server’s private and public key pair
remains the same. Public key cryptography is used only at the beginning of the session for
the key exchange operation. All subsequent connections in such a session are performed
using a symmetric key. Therefore, even if the traffic data are captured and the key used for
that session is exposed, such a key is not applicable to any other session. However, if
___F___ is leaked, all related sessions, both in the past and in the future, are vulnerable
since it is possible to derive session keys from the captured session traffic.

Other superior key exchange mechanisms include the Diffie-Hellman ephemeral key
exchange with RSA (DHE-RSA). This method allows a shared secret to be established over
an insecure communication channel. Instead of public key cryptography, it uses a
mathematical function that is easy to calculate in one direction but is difficult to reverse. In
this method, RSA is used only for signing the exchanged parameters, not for encryption, and
the shared secret to be established is chosen randomly for each session; thus, it is difficult to
decrypt the contents of that session even if a malicious person has the leaked ___F___ .
Therefore, these key-exchange mechanisms should also be considered as well in practical
use.

Subquestion
From the answer groups below, select the correct answer to be inserted in each blank
_______ in the above description.

Answer group for A, C, E and F

a) a random number b) CA’s private key
c) CA’s public key d) the server’s private key
e) the server’s public key f) the session key

Answer group for B and D

a) (2) ServerHello b) (3) Certificate
c) (4) ServerKeyExchange d) (5) ServerHelloDone
e) (6) ClientKeyExchange f) (7) ClientChangeCipherSpec
g) (8) ClientFinished h) (10) ServerFinished

- 7 -

 Concerning questions Q2 through Q5, select two of the four questions. For each selected
 question, mark the in the selection area on the answer sheet, and answer the question.
 If three or more questions are selected, only the first two questions will be graded.

Q2. Read the following description of file systems, and then answer Subquestions 1 and 2.

Note: In this question, one kilobyte (1 kB) is 1024 bytes.

Files and directories stored on a storage device can be arranged and managed differently
depending on file systems.
A storage device is normally formatted into blocks of the same size, and all files and
directories are placed into free blocks on the storage device. However, if the file is larger
than the size of the block, it will be divided into multiple pieces and placed into available
blocks. For example, in a file system with 4 kB blocks, 10 kB data of a file is divided into
three pieces and placed into three blocks.

[Linked allocation method]
In the linked allocation method, the list of the files is stored in a table called a directory,
where each entry contains the file name and other information, including the block number,
indicating the first block of the file.
Apart from the data, each block contains the next block number in the chain containing the
next part of the file and continues until the last block, where the end of file (EOF) value is
stored instead of the block number.
Figure 1 shows an example of a file system using the linked allocation method. It is assumed
that the directory is located at block number 0.

file name first block
readme 149

0 directory

149 data 953

708 data EOF

953 data 708

n-1

Note: Shaded parts are not shown, and n is the number of blocks on the storage device.

Figure 1 Example of a file system using the linked allocation method

- 8 -

In Figure 1, the upper-left part represents a directory entry for the file named readme, and
the right part represents the blocks on the storage device. The arrows represent the links from
the block number information to the actual block on the storage device. The file readme is
stored in block numbers 149, 953, and 708 in that order.
This allocation method is simple and easy to implement. However, this scheme has a
disadvantage because ___A___ .

[Indexed allocation method]
In the indexed allocation method, each file is associated with an index block. The index
block maintains a list of block numbers of the data related to the associated file.
Figure 2 shows an example of a file system using the indexed allocation method.

file name index block
readme 101

0 directory

101 149, 953, 708

149 data

708 data

953 data

n-1

Note: Shaded parts are not shown, and n is the number of blocks on the storage device.
Figure 2 Example of a file system using the indexed allocation method

In Figure 2, the upper-left part represents a directory entry for the file readme. It indicates
that the index block of the file readme is stored in block number 101. Block number 101
shows that the data of the file readme is stored in blocks 149, 953, and 708 in that order.
Therefore, after reading the index block, it is easy to find the block number of each part of
the data. However, this scheme also has a disadvantage because ___B___ .

[Calculation of the required number of blocks]
In the linked allocation method, each block holds an index value (the next block number).
In the indexed allocation method, an index block is needed separately instead of having an
index value in each block.
Consider the case where a file contains 40 kB data. On the assumption that the size of a block
is 4 kB and the size of an index value is 4 bytes, ___C1___ blocks are required to store
the file in the linked allocation method, and ___C2___ blocks are required in the indexed
allocation method. Here, the block for the directory entry is ignored.

149

953

708

- 9 -

Subquestion 1

From the answer group below, select the most appropriate answer to be inserted in each
blank _______ in the above description. Here, the answers to be inserted in C1 and C2
should be selected as the correct combination from the answer group for C.

Answer group for A and B

a) it cannot store a sequential file when the required number of continuous free blocks
is unavailable.

b) it is ineffective against a direct-access file since it must start at the beginning of the
file and continue through each block to find the specific part of the file.

c) it usually has greater wasted space than the other method especially in the system
with a large number of small files.

d) the content of the file cannot be stored in consecutive blocks due to the limitation of
the referencing mechanism, resulting in lower overall performance.

Answer group for C

 C1 C2
a) 10 10
b) 10 11
c) 11 10
d) 11 11

Subquestion 2
From the answer group below, select the correct answer to be inserted in each blank
_______ in the following description.

[Inode allocation method]
The inode allocation method is used in UNIX-based systems.
The inode allocation method combines the linked and indexed allocation methods into one.
Instead of using a table to look up a file, an entity called inode is used to store the information
about a file, similar to the working of the index block in Figure 2. It is an indexed allocation
method with the advantage of flexible indexing by chaining up to four index nodes.

- 10 -

The concept of inode used in UNIX-based systems is shown in Figure 3.
There are 15 pointers in an inode. The first 12 pointers directly point to data blocks; thus,
any part of the file can be directly accessed if it occupies less than or equal to 12 blocks. For
a larger file, the single indirect, double indirect, and triple indirect pointers will be used based
on the file size. The single indirect pointer points to a block containing direct pointers, while
the double indirect pointer points to a block containing pointers to another single indirect
pointer.

inode

size
*

direct blocks *
⁝
*

single indirect *
double indirect *
triple indirect *
block count

 data

data

..

..
data

data

data

data

data

data

data

data

data

data

data

data

data

(Legend)

the box indicates
a block containing
direct pointers.

Note: Shaded parts are not shown, and an “*” indicates a pointer to a block.
Figure 3 Concept of inode allocation method in UNIX-based systems

Table 1 shows the largest accessible data size by pointer level. Here, the block size is 4096
bytes (4 kB) and the pointer size is 4 bytes, i.e., a block holds 1024 pointers.

Table 1 Largest accessible data size by pointer level

Pointer level Number of pointers Largest accessible data size
direct blocks 12 48 kB

single indirect 1024 4 MB
double indirect 1024 × 1024 4 GB
triple indirect 1024 × 1024 × 1024 4 TB

*
⁝
* *

⁝
*

*
⁝
*

*
⁝
*

*
⁝
*

*
⁝
*

*
⁝
* *

⁝
*

*
⁝
*

*
⁝
*

*
⁝
*

- 11 -

Consider the case where a file contains 1 MB of data. On the assumption that the size of a
block is 4 kB and the size of a pointer is 4 bytes, ___D___ blocks are required to store the
file in the inode allocation method. Here, the block for the inode is ignored. Use 1MB ÷ 4
kB = 256.

It is possible to specify a different block size other than 4 kB while formatting a file system.
A smaller block size helps reduce occupied storage size per file for smaller files, while a
larger block size helps reduce the number of blocks per file for larger files.
Change of the block size affects the maximum accessible file size by two factors: the number
of bytes per data block and the number of pointers per index block. For example, if the size
of a block is 1 kB and the size of a pointer is 4 bytes, the maximum accessible file size will
be approximately ___E___ in the inode allocation method.

Answer group for D

a) 256 b) 257 c) 258 d) 259

Answer group for E

a) 16 GB b) 32 GB c) 64 GB d) 128 GB
e) 256 GB f) 512 GB g) 1 TB

- 12 -

 Concerning questions Q2 through Q5, select two of the four questions.

Q3. Read the following description of a relational database for a DVD shop, and then answer

Subquestions 1 through 3.

DVD shop U provides services of delivering, renting, and buying DVD films to its customers.
The accounting division of DVD shop U utilizes a database for payment management. The
database consists of four tables: Customer, Store, Staff, and Payment.
The table structures and examples of data storage are as follows:

Customer table

CustomerID FirstName LastName Email City
C001 Bill Smith billsmith@example.net South lake
C002 Baelfire Grehn baelfiregrehn@example.net East wood
C003 Bill Gretan billgretan@example.net West hill
C004 Brendon Green brendongreen@example.net East wood
C005 John Doe johndoe@example.net North coast

Store table

StoreID StoreName ManagerStaffID
10 South-west shop S001
20 North-east shop S002

Staff table

StaffID FirstName LastName Email StoreID
S001 Mike Hillyer Mike.Hillyer@example.com 10
S002 Jon Stephens Jon.Stephens@example.com 20

Payment table

PaymentID CustomerID StaffID Amount PayDate
P001 C002 S002 2.99 2023-04-05
P002 C003 S001 0.99 2023-04-08
P003 C001 S001 5.99 2023-04-14
P004 C003 S001 4.99 2023-04-15
P005 C005 S002 9.99 2023-04-21

- 13 -

Subquestion 1

From the answer group below, select the correct answer to be inserted in each blank
_______ in the following SQL statement.

The following SQL statement SQL1 outputs how much sales amount, in dollars, each store
brought in. The output records are ordered from higher to lower sales amounts.

-- SQL1 --

SELECT st.StoreID, st.StoreName, ___A___ AS Sales
FROM ___B___
INNER JOIN Staff s ON s.StaffID = p.StaffID

INNER JOIN Store st ON st.StoreID = s.StoreID

GROUP BY st.StoreID, st.StoreName

ORDER BY ___C___

The INNER JOIN keyword in this statement selects all rows from both tables in case there is
a match between the columns.
From the sample data shown in the table definitions, SQL1 outputs the following result:

StoreID StoreName Sales
20 North-east shop 12.98
10 South-west shop 11.97

Answer group for A through C

a) Amount b) Payment
c) Payment p d) Sales
e) Sales ASC f) Sales DESC
g) SUM(Amount)

- 14 -

Subquestion 2

From the answer group below, select the correct answer to be inserted in the blank _______
in the following SQL statement.

One day, a store staff found that a customer had left his/her PC in the store. On the PC, there
was a name sticker. Unfortunately, the characters were blurred and the staff could not clearly
read the owner’s name. Finally, the staff identified that:
o the first character of the first name was “B”.
o the last name consists of five characters; the first three characters were “Gre”, and the last

character was “n”.
The following SQL statement SQL2 extracts customers whose names are closest to the name
on the PC.

-- SQL2 --

SELECT CustomerID, FirstName, LastName, Email

FROM Customer

WHERE ___D___

Two wildcard characters often used in a search pattern in pattern matching are as follows:

'%' (percent sign) … represents any string of zero or more characters
'_' (underscore) … represents any single character

From the sample data shown in the table definitions, SQL2 outputs the following result:

CustomerID FirstName LastName Email
C002 Baelfire Grehn baelfiregrehn@example.net
C004 Brendon Green brendongreen@example.net

Answer group for D

a) (FirstName LIKE 'B%') AND (LastName LIKE 'Gre%n')

b) (FirstName LIKE 'B%') AND (LastName LIKE 'Gre_n')

c) (FirstName LIKE 'B_') AND (LastName LIKE 'Gre%n')

d) (FirstName LIKE 'B_') AND (LastName LIKE 'Gre_n')

- 15 -

Subquestion 3

From the answer group below, select the correct answer to be inserted in the blank _______
in the following SQL statement.

DVD shop U is planning a discount campaign for repeaters. The following SQL statement
SQL3 extracts customers who paid twice or more from April 1 to April 15, 2023.

-- SQL3 --

SELECT c.CustomerID, c.LastName, COUNT(*) AS PayCount

 FROM Customer c, Payment p

 WHERE c.CustomerID = p.CustomerID

 ___E___

From the sample data shown in the table definitions, SQL3 outputs the following result:

CustomerID LastName PayCount
C003 Gretan 2

Answer group for E

a) AND p.PayDate >= '2023-04-01' AND p.PayDate <= '2023-04-15'

 AND COUNT(*) >= 2

b) AND p.PayDate BETWEEN '2023-04-01' AND '2023-04-15'

 GROUP BY c.CustomerID, c.LastName

 HAVING COUNT(*) >= 2

c) GROUP BY c.CustomerID, c.LastName, p.PayDate

 HAVING p.PayDate >= '2023-04-01' AND p.PayDate <= '2023-04-15'

 AND COUNT(*) >= 2

d) HAVING p.PayDate BETWEEN '2023-04-01' AND '2023-04-15'

 AND COUNT(*) >= 2

- 16 -

the Internet

x.y.z.101

FW

CR

Mail server

DNS server

Web server
172.16.10.242

DMZ

x.y.z.102

PC PC…

90 hosts
Technology Dept

SW #1

f01

f03

172.16.10.243

web.example.com

mail.example.com

172.16.10.244

ns.example.com

f02

Server farm

Finance server
172.16.10.250

fs.example.com

f04

PC PC…

30 hosts

SW #2

PC PC…

26 hosts

SW #3

PC PC…

10 hosts

SW #4

Sales Dept Solutions Dept Finance Dept

f01

Link A

f02
f03 f04

f05

WAN：x.y.z.100/30
LAN：172.16.10.0/24

 Concerning questions Q2 through Q5, select two of the four questions.

Q4. Read the following description of redesign of a company network, and then answer

Subquestions 1 and 2.

Company V is a service integrator company. It currently operates with 100 staff.
A director of Company V plans to extend the services by increasing the number of staff and
improving the security controls in each department. A network administrator plans to
redesign the existing internal network infrastructure by introducing a variable-length subnet
mask network address scheme (different segments of networks) using private IP addresses
(172.16.10.0/24). The network segments are connected using a Core Router (CR) and
Firewall (FW).
Figure 1 shows the design of the network configuration of company V.

Note: example.com is the domain name of Company V.
Figure 1: Network configuration of Company V

- 17 -

The Network Address Translation function is placed at FW to access the Internet from the
internal network. A Mail server, a DNS server, and a Web server are in the DMZ. FW blocks
all incoming communication from the Internet to the internal network including the DMZ,
except for explicitly allowed communication. IP addresses (x.y.z.100/30) are used for a wide
area network (WAN) between the Internet and FW.

Subquestion 1
From the answer groups below, select the correct answer to be inserted in each blank
_______ in the following description and Table 1.

To design a variable length subnet mask network address scheme (different segments of
networks), the network administrator uses the following scheme:
o The network segments are designed per the requirements of the number of hosts in each

network, starting from the largest LAN to the smallest LAN. Note that the number of
hosts includes not only servers and PCs but also the interfaces of network devices
connected to the segment.

o After determining the addresses for all the LAN subnets, the first available address is
assigned to the interface of FW and the second to the interface of CR for Link A.

o The first available IP address is used as the gateway of each network segment and
assigned at the router interfaces. However, for the DMZ and Server farm, the gateway of
the network segment is assigned at the interface of FW. The gateway of the DMZ servers
is ___A___ .

o Table 1 shows the required different segments of networks as per specific hosts of each
network.

Table 1 Variable length subnet mask network address scheme

Number Network name Required number
of hosts Network mask

1 Technology department 92 172.16.10.0/25
2 Sales department 32 ___B___
3 Solutions department 28 ___C___
4 Finance department 12 172.16.10.224/28
5 DMZ 4 172.16.10.240/29
6 Server farm 2 172.16.10.248/30
7 Link A 2 172.16.10.252/30

- 18 -

Answer group for A

a) 172.16.10.1 b) 172.16.10.240 c) 172.16.10.241
d) 172.16.10.248 e) 172.16.10.249

Answer group for B and C

a) 172.16.10.0/26 b) 172.16.10.0/27 c) 172.16.10.127/26
d) 172.16.10.128/26 e) 172.16.10.128/27 f) 172.16.10.160/27
g) 172.16.10.191/26 h) 172.16.10.191/27 i) 172.16.10.192/26
j) 172.16.10.192/27

Subquestion 2
From the answer group below, select the correct answer to be inserted in each blank
_______ in Table 2.

After designing the different network segments, the network administrator configured the
routing protocol on the CR and FW. As a result, the routing function is working properly and
all hosts on the LANs can connect with each other and access to the Internet.
To improve the security of servers located in DMZ and the Finance server, the network
administrator implemented several zone-based security policies on FW according to the
following rules:
(1) Secure web services (HTTPS) on the external IP address of FW will be mapped to the

Web server in DMZ.
(2) Mail transferring services (SMTP) and receiving services (IMAPS) on the external IP

address of FW will be mapped to the Mail server in DMZ.
(3) Allow access from DMZ to the Internet via NAT (IP address translation), which is

necessary for the correct functionality of the mapped service.
(4) Allow access only from the Finance department to the Finance server with a secure web

service to access financial information from the server.
(5) Other hosts from LANs and external users cannot access the Finance server.
(6) Allow other traffic from LANs to DMZ, allowing access to multiple resources at the

servers from local users.

Table 2 shows the configured traffic rule table on FW. Each incoming packet is inspected
according to the rules on FW as follows:

- 19 -

(1) First, the source, destination, and destination service of the packet are compared with

those in rule number 1.
(i) If it matches, the specified action is executed. If the translation is specified, it will

also be applied. Once the action is executed, subsequent rules are not checked.
(ii) If it does not match, proceed to the next rule.

(2) Repeat step (1) until the end of the rule table reaches.
(3) Deny the packet if no action is executed in the rule table.

Table 2 Traffic rule table on FW (other settings are not shown)

Rule No. Source Destination Destination Service Action Translation
1 the Internet x.y.z.102 HTTPS Allow MAP: 172.1.10.242
2 the Internet x.y.z.102 SMTP/IMAPS Allow MAP: 172.1.10.243
3 DMZ ___D___ ANY Allow NAT
4 ___E___ 172.16.10.250 HTTPS Allow

5 ___F___ 172.16.10.250 ANY Deny

6 LANs DMZ ANY Allow

⁝ ⁝ ⁝ ⁝ ⁝

Note DMZ: A perimeter network that protects private networks from untrusted traffic.
 It is a subnetwork that sits between the Internet and private networks.
 the Internet: Untrusted or public network.
 FW is needed to protect private networks from untrusted traffic.
 LANs: Trusted or private network that can access any trusted traffic to DMZ and
 the Internet.
 ANY: All networks.

Answer group for D through F

a) 172.16.10.0/24 b) 172.16.10.64/26 c) 172.16.10.128/26
d) 172.16.10.224/28 e) 172.16.10.240/29 f) ANY
g) DMZ h) the Internet

- 20 -

 Concerning questions Q2 through Q5, select two of the four questions.

Q5. Read the following description of program development and testing, and then answer

Subquestion.

State S consists of four cities: East, North, South, and West. The State Statistics Bureau
(SSB) maintains a statistic file containing the information shown in Table 1.

Table 1 Contents of the statistic file

City name Total population Adult population Employed Unemployed
East 124,000 104,000 90,000 10,000
North 252,000 208,000 176,000 24,000
South 132,000 106,000 86,000 14,000
West 260,000 212,000 168,000 32,000

SSB has developed a program that outputs a statistic report from the statistic file. The
program is almost complete, and SSB is now preparing test cases.

[Program Description]
(1) The program reads the statistic file and outputs a statistic report.
(2) For each record of the statistic file, the program calculates and outputs the labor force

rate and unemployment rate using the following formulas:

Labor force rate (%) = 100 × (Employed + Unemployed) ÷ Adult population
Unemployment rate (%) = 100 × Unemployed ÷ (Employed + Unemployed)

(3) When all the records are processed, the program outputs the total of the total population,

adult population, employed, and unemployed, and the statewide labor force rate and
unemployment rate. After that, the program outputs the highest and lowest
unemployment rates with the city names.

(4) The following is an example of a statistic report:

City TotalPop AdultPop Employ Unemploy Labor% Unemp%
----- -------- -------- -------- -------- ------ ------

East 124,000 104,000 90,000 10,000 96.2 10.0

North 252,000 208,000 176,000 24,000 96.2 12.0

South 132,000 106,000 86,000 14,000 94.3 14.0

West 260,000 212,000 168,000 32,000 94.3 16.0
----- -------- -------- -------- -------- ------ ------

TOTAL 768,000 630,000 520,000 80,000 95.2 13.3

Highest Unemp%: 16.0, City: West

Lowest Unemp%: 10.0, City: East

- 21 -

[Program]

STRING: City, CityHigh ← "????", CityLow ← "????"

INT: TotalPop, AdultPop, Employ, Unemploy

INT: TotalTotalPop ← 0, TotalAdultPop ← 0,

 TotalEmploy ← 0, TotalUnemploy ← 0

REAL: LaborRate, UnempRate

 X  REAL: UnempRateHigh ← 0.0, UnempRateLow ← 100.0

OpenFile("statistic"); /* Open the statistic file */
Print("City TotalPop AdultPop Employ Unemploy Labor% Unemp%");

Print("----- -------- -------- -------- -------- ------ ------");

ReadRecord(City, TotalPop, AdultPop, Employ, Unemploy);

WHILE (not end-of-file) { /* Loop until the statistic file reaches the end-of-file */
 LaborRate ← 100.0 × (Employ + Unemploy) ÷ AdultPop;
 UnempRate ← 100.0 × Unemploy ÷ (Employ + Unemploy);

 Y  IF (UnempRate > UnempRateHigh) {
 CityHigh ← City;

 UnempRateHigh ← UnempRate;
 }

 Z  IF (UnempRate < UnempRateLow) {
 CityLow ← City;

 UnempRateLow ← UnempRate;
 }

 TotalTotalPop ← TotalTotalPop + TotalPop;

 TotalAdultPop ← TotalAdultPop + AdultPop;

 TotalEmploy ← TotalEmploy + Employ;

 TotalUnemploy ← TotalUnemploy + Unemploy;

 Print(City, TotalPop, AdultPop,

 Employ, Unemploy, LaborRate, UnempRate);

 ReadRecord(City, TotalPop, AdultPop, Employ, Unemploy);

}

Print("----- -------- -------- -------- -------- ------ ------");

LaborRate ← 100.0 × (TotalEmploy + TotalUnemploy) ÷ TotalAdultPop;
UnempRate ← 100.0 × TotalUnemploy ÷ (TotalEmploy + TotalUnemploy);
Print("TOTAL", TotalTotalPop, TotalAdultPop,

 TotalEmploy, TotalUnemploy, LaborRate, UnempRate);

Print(); /* Print a blank line */
Print("Highest Unemp%:", UnempRateHigh, ", City:", CityHigh);

Print("Lowest Unemp%:", UnempRateLow, ", City:", CityLow);

CloseFile("statistic"); /* Close the statistic file */

Note: The function ReadRecord(v1, v2, …) reads the next record from the statistic file,

and stores the values into variables v1, v2, … .
The function Print(p1, p2, …) prints arguments p1, p2, … in one line. Assuming
that spaces between arguments are adjusted automatically.

- 22 -

Subquestion

From the answer groups below, select the correct answer to be inserted into each blank
_______ in the following description.
Note that the shaded parts _______ are not shown.

The program development is now in a test phase, and testing is performed using various test
cases. Four test cases and their test results are shown below:

[Test case 1]
This is the case where two cities have the same unemployment rate for both the highest and
lowest rates. In this case, the program outputs the following report:

City TotalPop AdultPop Employ Unemploy Labor% Unemp%
----- -------- -------- -------- -------- ------ ------

East 120,000 104,000 90,000 10,000 96.2 10.0

North 120,000 105,000 90,000 10,000 95.2 10.0

South 120,000 106,000 85,000 15,000 94.3 15.0

West 120,000 107,000 85,000 15,000 93.5 15.0
----- -------- -------- -------- -------- ------ ------

TOTAL 480,000 422,000 350,000 50,000 94.8 12.5

Highest Unemp%: 15.0, City: ___A___
Lowest Unemp%: 10.0, City: ___A___

[Test case 2]
This is the case where all the cities have a 0% unemployment rate. According to the program
logic, the city names shown on the last two lines are as follows:

City TotalPop AdultPop Employ Unemploy Labor% Unemp%
----- -------- -------- -------- -------- ------ ------

East 120,000 104,000 90,000 0 86.5 0.0

North 120,000 105,000 90,000 0 85.7 0.0

South 120,000 106,000 85,000 0 80.2 0.0

West 120,000 107,000 85,000 0 79.4 0.0
----- -------- -------- -------- -------- ------ ------

TOTAL 480,000 422,000 350,000 0 82.9 0.0

Highest Unemp%: 0.0, City: ___B___
Lowest Unemp%: 0.0, City: ___B___

- 23 -

[Test case 3]
The phenomenon mentioned in test case 2 can be resolved by changing the operator “>” to
“≥” on line Y and changing the operator “<” to “≤” on line Z .
After these changes, another case where all the cities have a 100% unemployment rate is
tested. This time, the program outputs the following report:

City TotalPop AdultPop Employ Unemploy Labor% Unemp%
----- -------- -------- -------- -------- ------ ------

East 120,000 104,000 0 90,000 86.5 100.0

North 120,000 105,000 0 90,000 85.7 100.0

South 120,000 106,000 0 85,000 80.2 100.0

West 120,000 107,000 0 85,000 79.4 100.0
----- -------- -------- -------- -------- ------ ------

TOTAL 480,000 422,000 0 350,000 82.9 100.0

Highest Unemp%:100.0, City: ___C___
Lowest Unemp%:100.0, City: ___C___

[Test case 4]
After the changes mentioned in test case 3, test case 1 is tested again. Because the program
logic is changed, the program outputs the following report:

City TotalPop AdultPop Employ Unemploy Labor% Unemp%
----- -------- -------- -------- -------- ------ ------

East 120,000 104,000 90,000 10,000 96.2 10.0

North 120,000 105,000 90,000 10,000 95.2 10.0

South 120,000 106,000 85,000 15,000 94.3 15.0

West 120,000 107,000 85,000 15,000 93.5 15.0
----- -------- -------- -------- -------- ------ ------

TOTAL 480,000 422,000 350,000 50,000 94.8 12.5

Highest Unemp%: 15.0, City: ___D___
Lowest Unemp%: 10.0, City: ___D___

Incidentally, the phenomenon mentioned above can be resolved differently by replacing the
initial values on line X with, for example, the following values:

 REAL: UnempRateHigh ← ___E___, UnempRateLow ← ___F___

Answer group for A through D

a) ???? b) East c) North
d) South e) West

Answer group for E and F

a) -0.1 b) 0.1 c) 99.9 d) 100.1

- 24 -

 Question Q6 is compulsory.

Q6. Read the following description of programs, and then answer Subquestions 1 and 2.

An operating system needs to manage the dynamic assignment of memory for processes.
Figure 1 shows an example of memory allocation status. There are 32 contiguous memory
blocks numbered 0 to 31. For example, memory blocks 0 to 3 are allocated to process R, and
memory blocks 4 to 6 are free. In the Figures, ___ indicates free memory blocks.

0 3 4 6 7 10 11 15 16 19 20 24 25 27 28 31

R S T U V

Figure 1 Example of memory allocation status

One way to track the memory allocation status is to maintain a linked list. The linked list in
Figure 2 represents the memory allocation status presented in Figure 1. The nodes are kept
sorted by starting memory block number.
In Figure 2, sentinels (dotted nodes) are placed at both ends such that any actual node can
be handled as an intermediate node, even if it is the first or the last node. The shaded parts
are unchangeable by its nature, and “wall” indicates the states of the sentinels are “allocated”.

next ____●__→__●__→__●__ →__●__ →__●__ →__●__ →__●__→__●__→__●__ → ┤
prev __ ├ ← ● ← ● ← ● ← ● ← ● ← ● ← ● ← ● ←__●__
state __ wall R - S T - U V - wall
start __ -1 0 4 7 11 16 20 25 28 32
size __ 1 4 3 4 5 4 5 3 4 1

Figure 2 Linked list that represents the memory allocation status in Figure 1

[Program Description]
The program manages the memory shown in Figure 1 with the linked list shown in Figure 2.
The program performs the following two kinds of operations:
(i) When a new process starts, allocate the requested size of contiguous memory blocks,
(ii) When an executing process terminates, release the occupied memory blocks.

To handle the nodes, the data type Node is introduced as:

Node: node {Node: next, // next node
 Node: prev, // previous node
 STRING: state, // process name (allocated) or "-" (free)
 INT: start, // starting memory block number
 INT: size // size of memory blocks
 }

- 25 -

The program uses four functions: createNode, removeNode, allocate, and release.
The linked list is maintained by two major functions allocate and release. The functions
createNode and removeNode are called from allocate and release respectively.

(1) FUNCTION: createNode()

Function createNode creates a new node and returns it.
The following statements create a new node and name it new.

Node: new
new ← createNode();

After creating the new node, the program must insert it into the linked list by setting the
node pointers of concerned nodes.

(2) FUNCTION: removeNode(Node: remove)

Function removeNode removes the node remove given by the argument.
The following statements remove the node named garbage.

Node: garbage
removeNode(garbage);

Before removing the node, the program must cut off the linkage to / from it by setting the
node pointers of concerned nodes.

(3) FUNCTION: allocate(Node: free, STRING: procName, INT: reqSize)

Function allocate allocates memory blocks of size reqSize to the process procName
from the free memory blocks held by node free.
When this function is called, it is ensured that the following conditions are satisfied:
(i) The state of node free is “free”. Namely, free.state = "-".
(ii) Node free holds enough free memory blocks. Namely, free.size ≥ reqSize.

In this function, two cases (cases (a) and (b) in Figure 3) should be considered.
Case (a): free.size = reqSize.

The entire memory blocks held by the node free are allocated to the process. The
number of nodes in the linked list remains unchanged.

Case (b): free.size > reqSize.
The node free must be divided into two nodes. Consequently, the number of nodes
increases by 1.

- 26 -

 prN prN

(a) L M (b) L M
 10 ↓ 13 10 ↓ 13 14 15
 L N M L N M
 prN (new node) prN

Figure 3 Two cases where the function is called as allocate(prN, "N", 4);

[Program allocate]

FUNCTION: allocate(Node: free, STRING: procName, INT: reqSize) {

 Node: last, new

 IF (free.size = reqSize) {

 ___A___;
 }

 ELSE { /* free.size > reqSize */

 new ← createNode();

 last ← free.prev;

 last.next ← new;

 new.next ← free;

 ___B___;
 ___C___;

 new.state ← procName;

 new.start ← free.start;

 new.size ← reqSize;

 free.start ← free.start + reqSize;

 free.size ← ___D___;
 }

}

(4) FUNCTION: release(Node: proc)

Function release releases the memory blocks held by node proc. The memory blocks
occupied by the process in node proc become free memory blocks.
When this function is called, the following condition is satisfied:

The state of node proc is “allocated”. Namely, proc.state ≠ "-".
In this function, four cases (cases (a) to (d) in Figure 4) should be considered.
Case (a): The states of previous and next nodes are “allocated”. After changing node proc

to “free”, the number of nodes in the linked list remains unchanged.
Cases (b) and (c): The state of the previous node is “allocated” and the state of the next

node is “free”, or vice versa. After changing node proc to “free”, two consecutive
“free” nodes must be combined into a single “free” node. Therefore, the number of
nodes reduces by 1.

- 27 -

Case (d): The states of previous and next nodes are “free”. After changing node proc to

“free”, three consecutive “free” nodes must be combined into a single “free” node.
Therefore, the number of nodes reduces by 2.

 prX prX

(a) V W X Y Z (b) V W X Z
 ↓ ↓
 V W Y Z V W Z
 prX prX

 prX prX

(c) V X Y Z (d) V X Z
 ↓ ↓
 V Y Z V Z
 prX prX

Figure 4 Four cases where the function is called as release(prX);

[Program release]

FUNCTION: release(Node: proc) {

 Node: next1, next2, prev1, prev2

 proc.state ← "-";

 next1 ← proc.next;

 IF (next1.state = "-") { /* Combine two consecutive "free" nodes */
 next2 ← next1.next;

 proc.next ← next2;

 next2.prev ← proc;

 proc.size ← proc.size + next1.size;

 removeNode(next1);

 }

 prev1 ← proc.prev;

 IF (prev1.state = "-") { /* Combine two consecutive "free" nodes */
 prev2 ← prev1.prev;

 ___E___;
 ___F___;
 proc.start ← prev1.start;

 proc.size ← ___G___;
 removeNode(prev1);

 }

}

- 28 -

Subquestion 1

From the answer groups below, select the correct answer to be inserted in each blank
_______ in the above programs.

Answer group for A

a) /* Do nothing */ b) free.start ← free.start + reqSize
c) free.state ← "-" d) free.state ← procName

Answer group for B and C

a) free.prev ← last b) free.prev ← new
c) last.prev ← free d) last.prev ← new
e) new.prev ← free f) new.prev ← last

Answer group for D

a) free.size - reqSize b) free.size - reqSize - 1
c) reqSize d) reqSize - 1

Answer group for E and F

a) prev1.next ← proc b) prev1.prev ← prev2
c) prev2.next ← prev1 d) prev2.next ← proc
e) proc.prev ← prev1 f) proc.prev ← prev2

Answer group for G

a) prev1.size b) prev1.size + next1.size
c) prev2.size d) prev2.size + next1.size
e) proc.size + prev1.size f) proc.size + prev2.size

- 29 -

Subquestion 2

From the answer group below, select the correct answer to be inserted in each blank
_______ in the following description.

Figure 5 shows the current memory allocation status, and the linked list in Figure 6
represents the memory allocation status presented in Figure 5. It is assumed that the first
three nodes in Figure 6 can be referred to by node names n0, n1, and n2.

0 3 4 7 8 11 12 15 16 31

 X Y

Figure 5 Current memory allocation status

 node n0 n1 n2

next ____●__ →__●__→__●__→__●__→__●__ →__●__ → ┤
prev __ ├ ← ● ← ● ← ● ← ● ← ● ←__●__
state __ wall - X - Y - wall
start __ -1 0 4 8 12 16 32
size __ 1 4 4 4 4 16 1

Figure 6 Linked list that represents the memory allocation status in Figure 5

Among the following three cases:

Case 1: Function allocate is called as allocate(n1, "Z", 2);
Case 2: Function allocate is called as allocate(n1, "Z", 4);
Case 3: Function release is called as release(n2);

the case(s) that update(s) the contents of n0.next is(are) ___H___ .

Answer group for H

a) case 1 only b) case 2 only c) case 3 only
d) case 1 and case 2 e) case 1 and case 3 f) case 2 and case 3

- 30 -

 Concerning questions Q7 and Q8, select one of the two questions.
 Then, mark the in the selection area on the answer sheet, and answer the question.
 If two questions are selected, only the first question will be graded.

Q7. Read the following description of a C program, and then answer Subquestions 1 and 2.

A palindrome is a word or other sequence of characters that read the same backward as
forward, such as anna, madam, or stats.
There are also numeric palindromes that can read the same forward and backward, such as
353, 787, and 2332, including numbers with the same digits, such as 22, 555, and 8888. In
most cases, a natural number becomes a palindrome number when the “reverse and add”
process is continuously applied. The process is called the “Lychrel process”. For example,
13 becomes a palindrome number when 31, which is the reverse of 13, is added. Similarly,
754 becomes a palindrome number when the Lychrel process is applied twice: 754 + 457 =
1211; 1211 + 1121 = 2332; and 255 becomes a palindrome number when the Lychrel process
is applied three times: 255 + 552 = 807; 807 + 708 = 1515; 1515 + 5151 = 6666. However,
it is unknown for some numbers how many steps will be taken to become a palindrome
number with the Lychrel process. These numbers are 196, 295, and so on.

[Program Description]
The program reads a non-negative number of less than or equal to 10 digits and tries to make
a palindrome from the number. Finally, the program outputs a message that tells whether the
number is originally a palindrome or becomes a palindrome with the Lychrel process within
the specified number of attempts.

The program uses a character string to represent a number. The string has enough size for
applying at most 20 times reverse-and-add process to the given number. Each element of the
string stores a numerical character corresponding to a digit. The first element stores the
highest digit of the number and the last element stores the NUL character ('\0'). Figure 1
shows how the number 2023 is represented in a character string.

Index 0 1 2 3 4
Character string '2' '0' '2' '3' '\0'

Figure 1 Representation of the number 2023 in a character string

The program consists of the following six functions:

(1) int isNumber(char *str)
Returns 1 if the string consists of numerical characters only; otherwise, returns 0.

- 31 -

(2) void reverse(char *rev, const char *str)

Reverses the contents of the string str and stores the result into the string rev. For
example, calling reverse(x, y), where y is the string "12345", results in x being
"54321" with y kept unchanged. Both arguments shall not overlap.

(3) int isPalindrome(const char *str)
(The explanation is omitted.)

(4) void add(char *addend, const char *adder)
Adds two numbers represented by the strings. For example, adding "12345" and
"98765" results in "111110". Both arguments shall be strings of the same length. The
result of the addition is stored back to the string addend.

(5) int doLychrelProcess(char *strNum, int maxAttempts)
Calculates the number of attempts until the number takes to get to a palindrome number
using reverse-and-add process. The argument strNum holds the number represented by
a character string, and maxAttempts holds the maximum count of attempts. Returns the
actual count of attempts it made, or returns -1 if it cannot determine whether the number
becomes a palindrome under the maximum count of attempts.

(6) int main()
(The explanation is omitted.)

The program uses the following standard library function.

(0)size_t strlen(const char *str)
Returns the length of the string str. The length does not contain the terminating NUL
character ('\0').

The example outputs of the program are as follows.

(Example 1)
Enter a number: 97

[1] 97 + 79 = 176

[2] 176 + 671 = 847

[3] 847 + 748 = 1595

[4] 1595 + 5951 = 7546

[5] 7546 + 6457 = 14003

[6] 14003 + 30041 = 44044

The number becomes a palindrome within 6 steps.

- 32 -

(Example 2)

Enter a number: 98

[1] 98 + 89 = 187

[2] 187 + 781 = 968

[3] 968 + 869 = 1837

[4] 1837 + 7381 = 9218

[5] 9218 + 8129 = 17347

[6] 17347 + 74371 = 91718

⁝ (omitted)
[15] 664272356 + 653272466 = 1317544822

[16] 1317544822 + 2284457131 = 3602001953

[17] 3602001953 + 3591002063 = 7193004016

[18] 7193004016 + 6104003917 = 13297007933

[19] 13297007933 + 33970079231 = 47267087164

[20] 47267087164 + 46178076274 = 93445163438

The number does not become a palindrome within 20 steps.

[Program]

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#define MAX_ATTEMPTS 20

#define MAX_STRLEN (MAX_ATTEMPTS+11)

int isNumber(char *);

void reverse(char *, const char *);

int isPalindrome(const char *);

void add(char *, const char *);

int doLychrelProcess(char *, int);

 /*** α ***/
int isNumber(char *str) {

 int i;

 int len = strlen(str);

 for (i = 0; i < len; i++) {

 if (___A___) {
 return 0;

 }

 }

 return len != 0;

}

- 33 -

void reverse(char *rev, const char *str) {

 int i, j;

 int len = strlen(str);

 for (___B___) {
 rev[j] = str[i];

 }

 rev[j] = '\0';

}

int isPalindrome(const char *str) {

 int i;

 int len = strlen(str);

 for (i = 0; i < len / 2; i++) {

 if (str[i] != ___C___) {
 return 0;

 }

 }

 return len != 0;

}

void add(char *addend, const char *adder) {

 int i, digit;

 int carry = 0;

 int len = strlen(addend);

 for (i = len - 1; i >= 0; i--) {

 digit = addend[i] - '0' + adder[i] - '0' + carry;

 addend[i] = ___D___ + '0';
 carry = ___E___;
 }

 if (carry) {

 for (i = len + 1; i > 0; i--) {

 addend[i] = addend[i - 1];

 }

 addend[0] = carry + '0';

 }

}

 /*** β ***/

- 34 -

int doLychrelProcess(char *strNum, int maxAttempts) {

 int numAttempts = 0;

 char strRev[MAX_STRLEN];

 while (!isPalindrome(strNum) && ++numAttempts <= maxAttempts) {

 reverse(strRev, strNum);

 printf("[%d] %s + %s = ",

 numAttempts, strNum, strRev); /*** γ ***/
 add(strNum, strRev);

 printf("%s\n", strNum);

 }

 if (numAttempts <= maxAttempts) {

 return numAttempts;

 }

 return -1;

}

int main() {

 char strNum[MAX_STRLEN];

 int steps = 0;

 printf("Enter a number: ");

 scanf("%10s", strNum);

 if (!isNumber(strNum)) {

 printf("Please input a non-negative integer.\n");

 return 0;

 }

 /*** δ ***/
 steps = doLychrelProcess(strNum, MAX_ATTEMPTS);

 if (steps == ___F___) {
 printf("The number does not become a palindrome within "

 "%d steps.\n", MAX_ATTEMPTS);

 }

 else if (steps == 0) {

 printf("The number is a palindrome number.\n");

 }

 else {

 printf("The number becomes a palindrome within "

 "%d steps.\n", steps);

 }

 return 0;

}

- 35 -

Subquestion 1

From the answer groups below, select the correct answer to be inserted in each blank
_______ in the program.

Answer group for A

a) str[i] < '0' && str[i] > '9'

b) str[i] < '0' || str[i] > '9'
c) str[i] > '0' && str[i] < '9'

d) str[i] > '0' || str[i] < '9'

Answer group for B

a) i = 0, j = len; i < len - 1; i++, j--
b) i = 0, j = len; i < len; i++, j--

c) i = len - 1, j = 0; i >= 0; i--, j++
d) i = len, j = 0; i >= 0; i--, j++

Answer group for C

a) str[i / 2] b) str[len - 1 - i]
c) str[len - 1] d) str[len - i]
e) str[len]

Answer group for D and E

a) digit % 10 b) digit & 1
c) digit * 10 d) digit / 10
e) digit >> 1

Answer group for F

a) -1 b) 0
c) 1 d) MAX_ATTEMPTS

- 36 -

Subquestion 2

From the answer groups below, select the correct answer to be inserted in each blank
_______ in the following description. Here, it is assumed that the correct answers are
inserted in the blanks ___A___ to ___F___ in the program.

The program handles the number with leading zeros differently than the same number
without leading zeros. For example, the program output for input 0097 differs from the
output for 97.

 Enter a number: 0097

 [1] 0097 + 7900 = 7997

 The number becomes a palindrome within 1 steps.

A new function named skipLeadingZeros is added to the program according to the
following instructions such that the output for a number is unique even if there are leading
zeros or not.

(1) Insert the following line at the line indicated by /*** α ***/.

 const char *skipLeadingZeros(const char *);

(2) Insert the following 9 lines at the line indicated by /*** β ***/.

 const char *skipLeadingZeros(const char *str) {

 while (*str == '0') {

 str++;

 }

 if (*str == '\0') {

 return ___G___;
 }

 return str;

 }

This function returns the pointer to the character that is the first occurrence of non-zero
character. If str consists of zeros only, returns the pointer to the last zero character.

(3) Replace the line indicated by /*** γ ***/ with the following line.

 numAttempts, strNum, skipLeadingZeros(strRev));

- 37 -

(4) Insert the following line at the line indicated by /*** δ ***/.

 memmove(___H___);

Here, memmove is the standard library function defined as follows:

 void *memmove(void *dest, void *src, size_t len)

This function copies the character string of length len from src to dest, where src and
dest may overlap each other.

Answer group for G

a) *str b) str + 1
c) str - 1 d) NULL

Answer group for H

a) skipLeadingZeros(strNum), strNum, strlen(strNum)
b) skipLeadingZeros(strNum), strNum, strlen(strNum) + 1
c) strNum, skipLeadingZeros(strNum), strlen(skipLeadingZeros(strNum))
d) strNum, skipLeadingZeros(strNum), strlen(skipLeadingZeros(strNum)) + 1

- 38 -

 Concerning questions Q7 and Q8, select one of the two questions.

Q8. Read the following description of Java programs, and then answer Subquestions 1 and 2.

[Program Description]
A bag is a finite collection of objects in no particular order. A bag can contain duplicate items.
A data structure bag can perform the following tasks:
i) Get the number of items currently in the bag
ii) Add a given item in the bag
iii) Count the number of times a certain item occurs in the bag
iv) Check whether the bag is full
v) Check whether the bag is empty
Consider a bag data structure implemented by the interface Bag.
Table 1 summarizes the descriptions of the five methods.

Table 1 Descriptions of the five methods

Method Description
int size() Get and return the number of items currently in the bag.
boolean add(T entry) Add an entry to the bag. Return true if the entry is

successfully added; otherwise, return false.
int count(T entry) Count and return the number of occurrences of the

specified entry among the elements in the bag.
boolean isFull() Check whether the bag is full. Return true if the bag is

full; otherwise, return false.
boolean isEmpty() Check whether the bag is empty. Return true if the bag is

empty; otherwise, return false.

Program 1 represents the interface Bag. T is a generic type.
Program 2 represents the class ArrayBag that implements the interface Bag. There are two
constructors: (1) initialized with a default capacity of 25 and (2) initialized with the passing
capacity. The methods presented in Table 1 are implemented in Program 2.

[Program 1]

public interface Bag<T> {

 public int size();

 public boolean add(T entry);

 public int count(T entry);

 public boolean isFull();

 public boolean isEmpty();

}

- 39 -

[Program 2]

public class ___A___ implements Bag<T> {
 private final ___B___ bag;
 private int numberOfEntries = 0;

 private static final int DEFAULT_CAPACITY = 25;

 public ArrayBag() {

 this(DEFAULT_CAPACITY);

 }

 public ArrayBag(int desiredCapacity) {

 @SuppressWarnings("unchecked")

 T[] tempBag = (T[])new Object[desiredCapacity];

 bag = tempBag;

 }

 public int size() {

 return ___C___;
 }

 public boolean add(T entry) {

 if (entry == null) {

 throw new NullPointerException();

 }

 boolean result = true;

 if (isFull()) {

 result = false;

 } else {

 bag[___D___] = entry;
 }

 return result;

 }

 public int count(T entry) {

 int counter = 0;

 for (T item : bag) {

 if (entry.equals(item)) {

 counter++;

 }

 }

 return counter;

 }

- 40 -

 public boolean isFull() {

 return ___C___ >= ___E___;
 }

 public boolean isEmpty() {

 return ___C___ == ___F___;
 }

}

Subquestion 1

From the answer groups below, select the correct answer to be inserted in each blank
_______ in Program 2.

Answer group for A and B

a) ArrayBag b) ArrayBag<T> c) ArrayBag<T[]>
d) Bag e) Bag<T> f) Bag<T[]>
g) T h) T[]

Answer group for C through F

a) 0 b) 1
c) bag.length d) bag.length - 1
e) bag.length++ f) numberOfEntries
g) numberOfEntries++ h) numberOfEntries--

- 41 -

Subquestion 2

Four more methods are added to the class ArrayBag.
Table 2 summarizes the descriptions of the additional four methods.

Table 2 Descriptions of the additional four methods

Method Description
int indexOf(T entry) Find and return the first index of the specified entry in

the bag. If the entry does not exist, return -1.
T get(int index) Return the element at the position specified by the

argument.
T remove(int index) Remove the element at the position specified by the

argument. If the element is successfully removed, return
the removed value. Otherwise, return null.
If the removed element is not the last element in the bag,
move the last element to the removed position and set the
last element to null.

boolean removeEntry(T

entry)

Find and remove the first occurrence of the entry and
return true. Otherwise, return null.
If the removed element is not the last element in the bag,
move the last element to the removed position and set the
last element to null.

Program 3 represents the added four methods in the class ArrayBag.

[Program 3]

 public int indexOf(T entry) {

 for (int i = 0; i < numberOfEntries; i++) {

 if (entry.equals(bag[i])) {

 return i;

 }

 }

 return -1;

 }

 public T get(int index) {

 if (index < 0 || index >= numberOfEntries) {

 throw new ArrayIndexOutOfBoundsException();

 }

 return bag[index];

 }

- 42 -

 public T remove(int index) {

 T result = null;

 if (index >= 0 && index < numberOfEntries) {

 result = ___G___;
 ___G___ = ___H___;
 ___H___ = null;
 numberOfEntries--;

 }

 return result;

 }

 public boolean removeEntry(T entry) {

 T result = remove(indexOf(entry));

 return entry.equals(result);

 }

From the answer group below, select the correct answer to be inserted in each blank
_______ in Program 3.

Answer group for G and H

a) bag[bag.length - 1] b) bag[bag.length]
c) bag[index - 1] d) bag[index]
e) bag[numberOfEntries - 1] f) bag[numberOfEntries]

_ _
Company names and product names appearing in the test questions are trademarks or registered
trademarks of their respective companies. Note that the ® and ™ symbols are not used within the text.

